523 research outputs found

    Effective second-line treatment with cetuximab and bevacizumab in a patient with hepatic metastases of colorectal cancer and hyperbilirubinemia

    Get PDF
    Background: Irinotecan-based second-line chemotherapy of metastatic colorectal cancer (CRC) is effective, it might, however, be contraindicated in cases of severe liver dysfunction due to advanced liver metastases. Case Report: A 57-year-old woman with diffuse CRC liver metastases showed progressive disease on first-line treatment with capecitabine and oxaliplatin (XELOX). Chronic cholestasis and hyperbilirubinemia caused by advanced liver involvement prohibited second-line treatment with irinotecan-based chemotherapy. We initiated combined antibody treatment with cetuximab and bevacizumab. Results: Clinical performance status as well as laboratory parameters improved rapidly. Staging investigations after 8 weeks revealed a partial remission. Since bilirubin levels had returned to the upper limit of normal, therapy could be changed to standard irinotecan, 5-fluorouracil, folinic acid, and bevacizumab. Conclusion: Combined treatment with cetuximab and bevacizumab may be considered as an effective treatment option in patients who cannot be treated with standard chemotherapy regimens due to impaired liver metabolism of cytotoxic substances

    Oral capecitabine in gemcitabine-pretreated patients with advanced pancreatic cancer

    Get PDF
    Objective: To date, no standard regimen for salvage chemotherapy after gemcitabine (Gem) failure has been defined for patients with advanced pancreatic cancer (PC). Oral capecitabine (Cap) has shown promising activity in first-line chemotherapy trials in PC patients. Methods: Within a prospective single-center study, Cap was offered to patients who had already received at least 1 previous treatment regimen containing full-dose Gem (as a single agent, as part of a combination chemotherapy regimen or sequentially within a chemoradiotherapy protocol). Cap was administered orally at a dose of 1,250 mg/m(2) twice daily for 14 days followed by 7 days of rest. Study endpoints were objective tumor response rate by imaging criteria (according to RECIST), carbohydrate antigen 19-9 (CA19-9) tumor marker response, time to progression, overall survival and toxicity. Results: A median of 3 treatment cycles (range 1-36) was given to 39 patients. After a median follow-up of 6.6 months, 27 patients were evaluable for response: no complete or partial responses were observed, but 15 patients (39%) had stable disease. A CA19-9 reduction of >20% after 2 cycles of Cap was documented in 6 patients (15%). Median time to progression was 2.3 months (range 0.5-45.1) and median overall survival (since start of Cap treatment) was 7.6 months (range 0.7-45.1). Predominant grade 2 and 3 toxicities (per patient analysis) were hand-foot syndrome 28% (13% grade 3); anemia 23%; leg edema 15%; diarrhea 13%; nausea/vomiting 10%, and leukocytopenia 10%. Conclusion: Single-agent Cap is a safe treatment option for Gem-pretreated patients with advanced PC. Further evaluation of Cap in controlled clinical trials of Gem-pretreated patients with advanced PC is recommended. Copyright (C) 2008 S. Karger AG, Basel

    In vitro and in vivo effects of Pelargonium sidoides DC. root extract EPs® 7630 and selected constituents against SARS-CoV-2 B.1, Delta AY.4/AY.117 and Omicron BA.2

    Get PDF
    The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (−)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry

    No scientific consensus on GMO safety

    Get PDF
    A broad community of independent scientific researchers and scholars challenges recent claims of a consensus over the safety of genetically modified organisms (GMOs). In the following joint statement, the claimed consensus is shown to be an artificial construct that has been falsely perpetuated through diverse fora. Irrespective of contradictory evidence in the refereed literature, as documented below, the claim that there is now a consensus on the safety of GMOs continues to be widely and often uncritically aired. For decades, the safety of GMOs has been a hotly controversial topic that has been much debated around the world. Published results are contradictory, in part due to the range of different research methods employed, an inadequacy of available procedures, and differences in the analysis and interpretation of data. Such a lack of consensus on safety is also evidenced by the agreement of policymakers from over 160 countries - in the UN’s Cartagena Biosafety Protocol and the Guidelines of the Codex Alimentarius - to authorize careful case-by-case assessment of each GMO by national authorities to determine whether the particular construct satisfies the national criteria for ‘safe’. Rigorous assessment of GMO safety has been hampered by the lack of funding independent of proprietary interests. Research for the public good has been further constrained by property rights issues, and by denial of access to research material for researchers unwilling to sign contractual agreements with the developers, which confer unacceptable control over publication to the proprietary interests. The joint statement developed and signed by over 300 independent researchers, and reproduced and published below, does not assert that GMOs are unsafe or safe. Rather, the statement concludes that the scarcity and contradictory nature of the scientific evidence published to date prevents conclusive claims of safety, or of lack of safety, of GMOs. Claims of consensus on the safety of GMOs are not supported by an objective analysis of the refereed literature

    Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function

    Get PDF
    Endometrial Cancer is the most common cancer in the female genital tract in developed countries, and with its increasing incidence due to risk factors such as aging and obesity tends to become a public health issue. However, its immune environment has been less characterized than in other tumors such as breast cancers. NK cells are cytotoxic innate lymphoid cells that are considered as a major anti-tumoral effector cell type which function is drastically altered in tumors which participates to tumor progression. Here we characterize tumor NK cells both phenotypically and functionally in the tumor microenvironment of endometrial cancer. For that, we gathered endometrial tumors, tumor adjacent healthy tissue, blood from matching patients and healthy donor blood to perform comparative analysis of NK cells. First we found that NK cells were impoverished in the tumor infiltrate. We then compared the phenotype of NK cells in the tumor and found that tumor resident CD103+ NK cells exhibited more co-inhibitory molecules such as Tigit, and TIM-3 compared to recruited CD103− NK cells and that the expression of these molecules increased with the severity of the disease. We showed that both chemokines (CXCL12, IP-10, and CCL27) and cytokines profiles (IL-1β and IL-6) were altered in the tumor microenvironment and might reduce NK cell function and recruitment to the tumor site. This led to hypothesize that the tumor microenvironment reduces resident NK cells cytotoxicity which we confirmed by measuring cytotoxic effector production and degranulation. Taken together, our results show that the tumor microenvironment reshapes NK cell phenotype and function to promote tumor progression

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson

    Get PDF
    We report first evidence for a fully reconstructed decay mode of the B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability of a peak of this magnitude occurring by random fluctuation in the search region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore